Anticyclotomic p-ordinary Iwasawa theory of elliptic modular forms
نویسندگان
چکیده
منابع مشابه
Anticyclotomic Iwasawa Theory of Cm Elliptic Curves
We study the Iwasawa theory of a CM elliptic curve E in the anticyclotomic Zp-extension of the CM field, where p is a prime of good, ordinary reduction for E. When the complex L-function of E vanishes to even order, Rubin’s proof the two variable main conjecture of Iwasawa theory implies that the Pontryagin dual of the p-power Selmer group over the anticyclotomic extension is a torsion Iwasawa ...
متن کاملAnticyclotomic Iwasawa Theory of Cm Elliptic Curves Ii
We study the Iwasawa theory of a CM elliptic curve E in the anticyclotomic Zpextension D∞ of the CM field K, where p is a prime of good, supersingular reduction for E. Our main result yields an asymptotic formula for the corank of the p-primary Selmer group of E along the extension D∞/K.
متن کاملOn Anticyclotomic Μ-invariants of Modular Forms
We prove the μ-part of the main conjecture for modular forms along the anticyclotomic Zp-extension of a quadratic imaginary field. Our proof consists of first giving an explicit formula for the algebraic μ-invariant, and then using results of Ribet and Takahashi showing that our formula agrees with Vatsal’s formula for the analytic μ-invariant.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Forum Mathematicum
سال: 2018
ISSN: 0933-7741,1435-5337
DOI: 10.1515/forum-2016-0189